

Postgraduate MSc degree of Basic Medical Sciences in Biochemistry

Blueprint of (Bioenergetics & metabolism) course (Master) Course Code: (BIC504BM, BIC509BM, BIC510BM)

The total marks of this course are 200 marks:

• Student activity & workplace-based assessment: 40 marks

• Written assessment (MCQ + Short assay): **160 marks distributed as follows:**

Course content	Teaching hours	Relative weight to the total marks	Total Marks	MCQ Marks	No of exam Q (MCQ)	Short essay questions Marks	No of exam Q (short essay questions)
Biological oxidation & bioenergetics. • laws of thermodynamics and role of high energy phosphates. • oxidoreductases and their importance in metabolism. • electron transport chain, complexes & ATP synthase enzyme. • oxidative phosphorylation and uncouplers.	7	8.1%	13	9		4	
Chemistry and Metabolism of Carbohydrates: Carbohydrates of physiological significance Citric acid cycle Glycolysis pathway and its control.	18 (17 lecture+ 2 practical)	20.9% (19.8% lecture +1.1%practical)	33 (31.5 lecture + 2 practical)	23		10	

• Synthesis and breakdown of						
glycogen and its regulation						
• Gluconeogenesis & its						
regulation						
• Pentose phosphate pathway						
& its role						
Uronic acid pathway						
• Metabolism of hexoses.						
3-Chemistry and						
Metabolism of lipids:						
Lipids of physiological						
significance						
Fatty acid oxidation	20	23.3%	37			
Ketogenesis and their	(19 lecture+	(22.1% lecture	(35.5 lecture	26	11	
regulation and importance.	2 practical)	+1.2% practical)	+1.5 practical)			
• Fatty acid synthesis and	•	,	,			
controlPlasma lipoproteins						
Plasma lipoproteins metabolism						
Cholesterol metabolism						
4- Metabolism of protein &						
individual amino acids:						
• Synthesis of nonessential						
amino acids.						
• Protein turnover, role of	16	18.6%	30			
transaminases	(15 lecture +	(17.4% lecture	(28 lecture+ 2	21	9	
• Urea cycle	2 practical)	+1.2% practical)	practical)			
• Catabolism of carbon						
skeletons of amino acids						
• Identify metabolic defects in						
their metabolism.						

• Conversion of amino acids						
to specialized products.						
5- metabolism of vitamins,						
macroelements & trace	2	2.3%	4	3	1	
elements						
6- Purine & pyrimidine						
nucleotides metabolism:						
• Structure, synthesis,	5	5.8%	10	7	3	
degradation pathways of						
nucleotides and their roles.						
7- Porphyrin metabolism &						
bile pigment.						
• Types of jaundice						
Biochemical basis of						
hemoglobinopathies:						
1. The genetic basis of Sickle	13	15.1%	24	17	7	
Cell disease						
2. The genetic basis of						
Thalassemia						
3. Inheritance of ABO Blood						
groups						
8- Protein misfolding	5	<i>5</i> 90/	9	6	3	
diseases	5	5.8%	9	6	3	
	(83 lecture+	100%				
Total	6 practical) =	(96.5% lecture	160 marks	112	48	
	86 h	+3.5% practical)				

Head of Biochemistry & Molecular Biology Department Prof. Fagr Bazeed