
THORACIC TRAUMA

CHEST WALL

RIB FRACTURES

Pathophysiology

- Ribs break at point of impact or posterior angle (weakest structural point)
- Ribs 1-3 = Relatively protected = Higher association with severe intrathoracic injury
- Ribs 9-12 = More mobile = Higher association with intra-abdominal injury
 - Right sided rib fractures = 3K as likely to have hepatic injury
 - teft sided rib fractures = 4X as likely to have spJeniC injury
- Fractures more common in adults due to inelasticity of the chest wall
- 8ib fractures = High potential for penetrating injury to pleura, lung, liver or spleen
- Elderly patients with multiple rib fractures: XS mortality

RIB FRACTURES

Clinical Course

- Rib fractures heal in 3-6 weeks
- Gradual decrease in pain over time with analgesia needed for first 1-3 weeks

• Management

- Pain control
- Maintenance of pulmonary function
- Elderly patients may require admission for treatment with IV pain control and monitoring of respiratory status
- Displaced rib fractures should be monitored and repeat CXR at 3 hours after presentation to evaluate for delayed pneumothorax development

FLAIL CHEST

• Epidemiology

- Occurs in 1/3 of major trauma patients with major chest injuries

- Pathophysiology
 - Three of more adjacent ribs are fractured at two points, resulting in a Paradoxical movement of chest wall
 - Association with underlying pulmonary contusion
 - Severe pain associated with injury results in muscular splinting and resultant atelectasis and hypoxemia
- Management

Flail Chest - Management

Analgesia.


- Mainstay
- Opioid Analgesics (risk of respiratory depression)
- ►NSAIDs
- Thoracic or high lumbar Epidurals with or without Opioid additives.
- Posterior rib blocks (lasts upto 24 hours)
- Instillation of L.A. into pleural space through
- ICD (controversial)

Flail Chest - Management

Intubation & Ventilation.

- Rarely indicated
- Indicated for hypoxia due to pulm. contusions.
- Double lumen tracheal tube.
- each lumen connected to a different ventilator.
- each lung may require drastically different pressures and flows to adequately ventilate.

STERNAL FRACTURE

- Epidemiology
 - Primarily, the result of anterior blunt trauma
 - Rapid deceleration injury from a frontal impact results in sternal fracture at site of seatbelt
 - Isolated sternal fractures are relatively benign with low mortality (0.79a)
 - Complications
 - Myocardial Contusion (1.5-6% of cases)
 - Spinal Fractures (« 10K of cases)
 - Rib Fractures (21% of cases)
 - No association between eternal fracture and blunt aortic injury

STERNAL FRACTURE

Pathophysiology

Associated mediastinal injuries should be considered including

mediastinal hematoma from injury to underlying proximal great

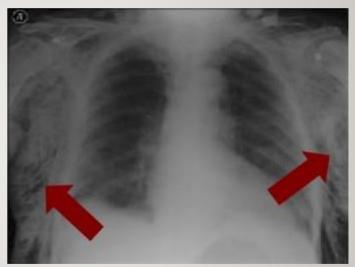
vessels

- Diagnostic Management
 - Lateral radiograph is most helpful with diagnosis
 - Patients with eternal fracture should be screened for myocardial contusion with EKG and serial cardiac enzymes
- Management
 - Analgesia

PULMONARY INJURIES

- Subcutaneous Emphysema Pulmonary Contusion
- Pneumothorax
- Hemothorax
- Tracheobronchial Injury

SUBCUTANEOUS EMPHYSEMA


Pathophysiology

- Subcutaneous emphysema in the presence of the chest wall is indicative of a more serious thoracic injury
- Location
 - [°] Adjacent to penetrating wound
 - ° Localized subcutaneous air over chest wall
 - Indicates presence of traumatic pneomoth0rax
 - Localized over supraclavicular area and anterior neck
 - Typi¢ally indicades pneumomediastin um
 - Massive subcutaneous air of the face and neck
 - TypiCally the result of rupture d bro«¢hus
- Management
 - Mostly subcutaneous air is benign and self limited and can be treated with high flow oxygen

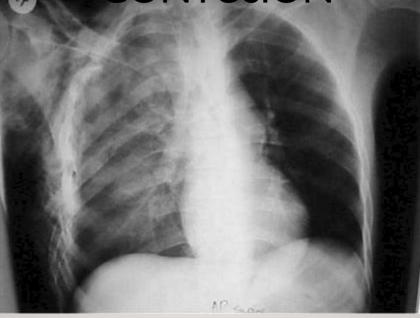
SUBCUTANEOUS EMPHYSEMA

PULMONARY CONTUSION

- Epidemiology
 - Present in 30-75% of patients with significant blunt chest trauma
 - Most common significant chest injury in children
- Pathophysiology
 - Direct pulmonary parenchyma injury with associated alveolar edema and hemorrhage
- Clinical features
 - Dyspnea, Tachypnea, Cyanosis, Tachycardia, Hypotension, Chest wall 6roising
 - Hemoptysis may be present in 50% of patients
 - Associated with flail chest
- Diagnosis
 - Radiographic findings appear within minutes of an injury
 - Patchy irregular alveolar infiltrates to frank consolidation
 - Always present within 6 hours of injury
 - Differentiate from ARDS by time course
 - Pulmonary contusion < 6 hours present, resolves in 4B-72 houre
 - ARD5 onse £ is 24 72 hours after injury

PULMONARY CONTUSION

- Management
 - Restriction of fluid administration
 - Pain Control

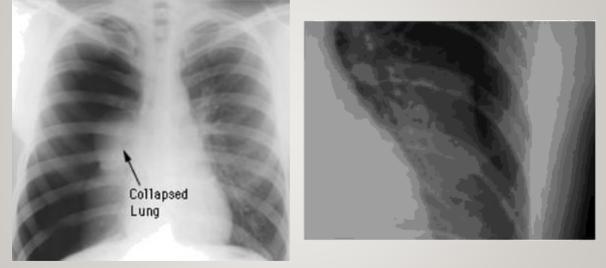

Judicious use of respiratory support with endotracheal intubation and mechanical ventilation

Complication = Pneumonia

Prophylactic antibiotics are not recommended

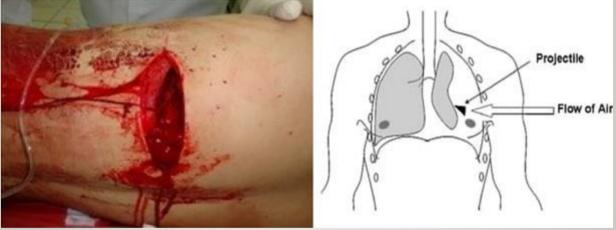
- Prognosis
 - Morta | ity of isolated pulmonary contusion is 5 -16%

PULMONARY CONTUSION


PNEUMOTHORAX

- Definition = Accumulation of air in the pleural space
- Pathophysiology
 - Traumatic pneumothorax is caused by fractured rib that is driven inward resulting in laceration of pleura
 - Also occurs without a fractures when impact is delivered at full inspiration with the glattis closed, leasing to tremendous increase in intra-alveolar pressure and subsequent rupture Df the alveoli
 - Penetrating trauma such as a gunshot wound or knife injury causing direct trauma to the pleura

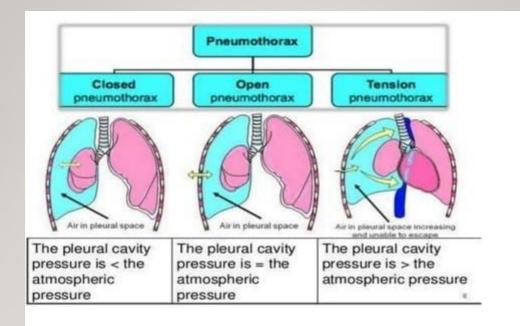
PNEUMOTHORAX


- Types of Pneumothorax
 - Simple Pneumothorax
 - No communication with the atmosphere or any shift of mediastinal structures or the hemi-diaphragm
 - Pneumothorax grading
 - Small vs large
 - Occult
 - Communicating Pneumothorax (Open Pneumothorax)
 - ° Pneumothorax associated with loss of integrity of chest wall
 - "sucking chest wound"

SIMPLE PNEUMOTHORAX

Chest X-Ray in inspirium

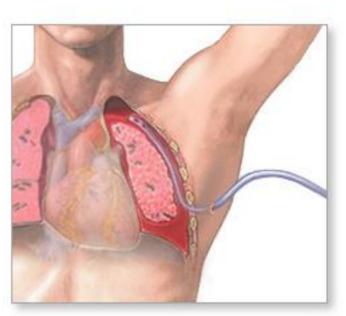
OPEN PNEUMOTHORAX


TENSION PNEUMOTHORAX

Tension Pneumothorax

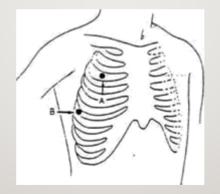
Progressive accumulation of air under pressure within the chest cavity with shift of mediastinal structures to opposite hemithorax

- Results in compression of contralateral lung and great vessel venous return
- Results in decreased diastolic filling of the heart and subsequent decreased cardiac output
- Leads to rapid onset of hypoxia, acidosis and shock
- Cardinal Physical Exam Findings
 - Tachycardia, Jugular Venous Dissension, Tachypnea
 - AbSent Breath sounds on ipsilateral s<de
 - Hypoxia and Hypotension, followed by cardiac drrest


PNEUMOTHORAX

Management

- Penetrating Trauma/No Pneumothorax
 - If CXR is negative, Observation x 3 hrs, Repeat CXR prior to D/c
- Simple Pneumothorax
 - Some authors advocate chest tube for all traumatic pneumothoracies
 - Small Pneumothorax
 - Some people advocate careful observation if patient is symptoms free and does not need anesthesia or positive pressure ventilation
 - 5mall apical pneumothorax « 25% may also be observed closely
 - Occult CT diagnosed PTX is also suggested to be amenable to conservative treatment
 - If patient is to receive positive pressure ventilation or has evidence of multi-system trauma, chest tube should be placed
 - Moderate/Large Pneumothorax = Chest tube


Chest tube drains blood from the lungs

PNEUMOTHORAX

- Tension Pneumothorax Needle Thoracostomy(immediate)
 - 5" Intercostal Space Anterior Axi1lary Line Tube Thoracostomy
 - ° 5" Intercostal Space Anterior Axi1lary Line

HEMOTHORAX

- Definition = accumulation of blood in the pleural space after blunt or penetrating traumatic injury
- Pathophysiology

Hemorrhage from injured lung parenchyma is most common cause but is usually self-limiting

- Other vessels may be site of injury including intercostal and internal mammary arteries
- Less commonly, major vessels or hilar vessels are site of bleeding
- Clinical Features
 - Depending on rate and quantity of hemorrhage, varying levels of hemorrhagic shock are encountered
 - Diminished or absent breath sounds on affected side

HEMOTHORAX

- Blood accumulation in plural cavity.
- ' Minor/ major-massive (up to 3 liter!!!)
- X-ray show >200ml fluid
- Tx- Chest tube
- ' lindications for thoracotomy-
 - 1- blood 1500cc > initial
 - 2->150-200 cc blood/h for the next 2-3 hours
 - 3- Persistent blood transfusion

Hemothorax

TRACHEOBRONCHIAL INJURY

- Epidemiology
 - Occur with either blunt of penetrating trauma to the chest or neck
 - More than half are result of MVC
 - Rare entity occurring in < 3% of patients with significant chest trauma
 - Mortality = 10%
 - 80% of these injuries occur within 2 cm of the carina

TRACHEOBRONCHIAL INJURY • Clinical Features

- Symptoms
 - Massive Air Leak, Hemoptysis and Subcutaneous Emphysema
- Two clinical Presentations
 - Wound opens into pleural space —Large PTX
 - Chest tube fails to evacuate the space and re-expand the lung characterized by bronChopleural fistula or persistent air leak
 - Complete transection of the tracheobronchial tree but little communication with the pleural space
 - Present with unexplained atelectasis or pneumonia days to weeks after injury

TRACHEOBRONCHIAL INJURY Diagnosis

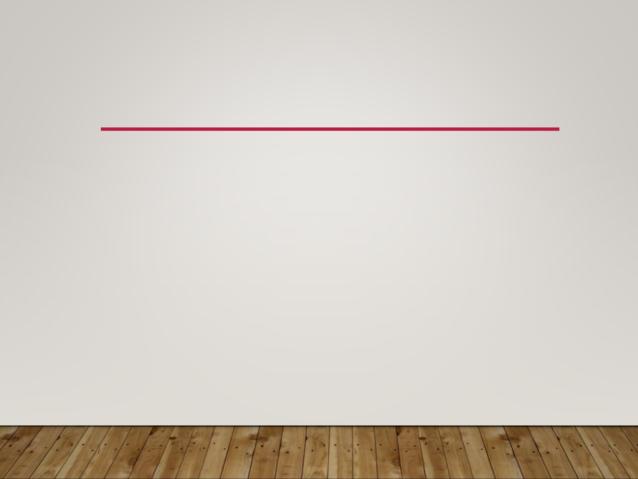
- CXR may demonstrate secondary findings
 - i.e. Pneumothorax, Pneumomediastinum, etc
- Definitive diagnosis is made with bronchoscopy
- Management
 - Endotracheal Intubation
 - Preferable if done with bronchoscope to allow visualization of tube passing beyond site of injury
 - Blind intubation risks placing endotracheal tube into transected airway, false passage or convert partial tear into full tear
 - Surgical Repair (Thoracotomy)

TRACHEOBRONCHIAL INJURY

• Tracheobronchial injury resulting in bilateral pneumothorax, pneumomediastinum and subcutaneous air

EMERGENCY DEPARTMENT THORACOTOMY

- Drastic potentially life-saving procedure
- Indications
- 1. Cardiac arrest in penetrating injury
- 2. Massive hemotfiorax (>1500cc, 300cc/h for 2-4h)
- 3. Penetrating injury to anterior chest with cardiac tamponade
- 4. Large open wound of chest wall
- S. Major vascular injery in hemodynamic instability
- 6. Major tracheobronchial injury
- 7. Esophagial perforation


Pulseless patient suffer from BLUNT trauma is contraindication!!!!

• Goal = Determine if a life-threatening fixable lesion is present

EMERGENCY DEPARTMENT THORACOTOMY

